Matrix Nearness Problems with Bregman Divergences

نویسندگان

  • Inderjit S. Dhillon
  • Joel A. Tropp
چکیده

This paper discusses a new class of matrix nearness problems that measure approximation error using a directed distance measure called a Bregman divergence. Bregman divergences offer an important generalization of the squared Frobenius norm and relative entropy, and they all share fundamental geometric properties. In addition, these divergences are intimately connected with exponential families of probability distributions. Therefore, it is natural to study matrix approximation problems with respect to Bregman divergences. This article proposes a framework for studying these problems, discusses some specific matrix nearness problems, and provides algorithms for solving them numerically. These algorithms apply to many classical and novel problems, and they admit a striking geometric interpretation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Rank Kernel Learning with Bregman Matrix Divergences

In this paper, we study low-rank matrix nearness problems, with a focus on learning lowrank positive semidefinite (kernel) matrices for machine learning applications. We propose efficient algorithms that scale linearly in the number of data points and quadratically in the rank of the input matrix. Existing algorithms for learning kernel matrices often scale poorly, with running times that are c...

متن کامل

Regularized Optimal Transport and the Rot Mover's Distance

This paper presents a unified framework for smooth convex regularization of discrete optimal transport problems. In this context, the regularized optimal transport turns out to be equivalent to a matrix nearness problem with respect to Bregman divergences. Our framework thus naturally generalizes a previously proposed regularization based on the Boltzmann-Shannon entropy related to the Kullback...

متن کامل

Symmetrized Bregman Divergences and Metrics

While Bregman divergences [3] have been used for several machine learning problems in recent years, the facts that they are asymmetric and does not satisfy triangle inequality have been a major limitation. In this paper, we investigate the relationship between two families of symmetrized Bregman divergences and metrics, which satisfy the triangle inequality. Further, we investigate kmeans-type ...

متن کامل

Generalized Nonnegative Matrix Approximations with Bregman Divergences

Nonnegative matrix approximation (NNMA) is a recent technique for dimensionality reduction and data analysis that yields a parts based, sparse nonnegative representation for nonnegative input data. NNMA has found a wide variety of applications, including text analysis, document clustering, face/image recognition, language modeling, speech processing and many others. Despite these numerous appli...

متن کامل

Efficient Bregman Range Search

We develop an algorithm for efficient range search when the notion of dissimilarity is given by a Bregman divergence. The range search task is to return all points in a potentially large database that are within some specified distance of a query. It arises in many learning algorithms such as locally-weighted regression, kernel density estimation, neighborhood graph-based algorithms, and in tas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2007